
Executive Summary

23
Critical Issues

45
High Priority

67
Medium Issues

78%
Migration Ready

Audit Score: B+ 48h Delivery SOC2 Compliant Process

Key Findings Overview

Sample Nuxt2 Audit Report
See a real (anonymized) Nuxt2 audit. This is exactly what you get as
our client — technical, actionable, and ready for decision-making.

Book an Audit - $499 (48h SLA)

Table of Contents

Executive Summary

Project Information

Libraries & Dependencies

Security Review

Code Quality

Performance & Scalability

Your Nuxt2 application demonstrates solid architectural foundations with 78% migration readiness

to Nuxt3. However, critical security vulnerabilities in outdated dependencies require immediate

attention before any migration efforts. Performance bottlenecks identified in SSR configuration and

database queries present opportunities for 2.5x speed improvements. Code quality metrics exceed

industry averages with comprehensive test coverage at 85%, though technical debt in legacy

components needs addressing.

Immediate Action Required

• 12 critical security vulnerabilities in npm packages

• Exposed API keys in client-side bundles

• Missing CSRF protection on 8 endpoints

• Unpatched Node.js version (EOL in 4 months)

• Database queries without proper indexing

Strengths Identified

• Comprehensive test suite (85% coverage)

• Well-structured component architecture

• Proper TypeScript implementation

• Effective caching strategies in place

• Clean separation of concerns

Dependencies

Health

Total Dependencies 156

Critical Vulnerabilities 12

High Risk 8

Outdated Packages 34

Performance Metrics

Lighthouse Score 68/100

First Contentful Paint 2.4s

Time to Interactive 4.2s

Bundle Size 1.2MB

Security

Assessment

Security Score C+

Auth Implementation Secure

API

Endpoints

67%

Protected

Data

Encryption

In Transit

Only

Current Architecture

Migration Readiness

Support & Maintenance

Actionable Tasks

Key Recommendations

FAQ

What's Next?

Migration Readiness Assessment

Ready for Migration (78%)

Vue 2 Components 90% Compatible

Nuxt Modules 75% Compatible

Build Configuration 60% Compatible

Migration Blockers

Legacy @nuxtjs/axios module requires refactoring

to $fetch

Custom webpack configurations need Vite

migration

3 community modules without Nuxt3 equivalents

Server middleware requires Bridge/Nitro adaptation

General Project Information

Technology Stack

Framework Nuxt.js 2.17.2

Vue Version 2.6.14

Node.js 16.14.0 (EOL Soon)

Package Manager npm 8.3.1

TypeScript 4.9.5 ✓

Build Tool Webpack 5.88.2

Repository Statistics

Total Lines of Code 47,392

Vue Components 124

TypeScript Files 89

Test Files 67

Dependencies 156

Last Deploy 3 days ago

Infrastructure & Database

Database

Primary DB PostgreSQL 14.9

Redis Cache 7.0.12

ORM Prisma 5.2.0

Migrations ✓ Automated

Hosting & CDN

Platform Vercel Pro

CDN Vercel Edge Network

Regions US-East, EU-West

SSL ✓ Auto-renewal

CI/CD Pipeline

CI Service GitHub Actions

Test Coverage 85%

Deploy Time ~4 minutes

Rollback ✓ Automated

Business Context & Requirements

Application Overview

B2B SaaS platform serving enterprise customers with

comprehensive project management and team

collaboration tools. Critical business application

requiring 99.9% uptime with revenue impact estimated

at $50K/hour during downtime.

Business Model B2B SaaS (Subscription)

Customer Segments Enterprise (500+ employees)

Average Contract Value $12K/year

Churn Rate 3.2% monthly

Scale & Performance Metrics

Active Customers 2,547

Monthly Active Users 15,234

Peak Concurrent Users 1,200

API Requests/Day 2.4M

Data Storage 450GB

Monthly Growth +12%

Development Team & Workflow

Team Composition

Frontend Developers 4 (2 Senior, 2 Mid-level)

Development Workflow

Development Methodology Scrum (2-week sprints)

Backend Engineers 3 (1 Senior, 2 Mid-level)

DevOps Engineer 1 Senior

Product Manager 1 Senior

QA Engineer 1 Mid-level

Deployment Frequency 2-3x per week

Code Review Process ✓ Mandatory

Feature Branch Strategy ✓ Git Flow

Testing Strategy Unit + Integration + E2E

Compliance & Security Requirements

As an enterprise SaaS platform handling sensitive business data, the application must maintain strict compliance

standards and security protocols. Current compliance status requires immediate attention in several areas.

Required Compliance

SOC 2 Type II In Progress

GDPR Partial

CCPA Compliant

ISO 27001 Required

Security Protocols

Data Encryption Transit Only

Access ControlsRBAC Implemented

Audit Logging Comprehensive

Penetration Testing 6 months ago

Data Handling

Data Retention Policy ✓ Defined

Backup Strategy Daily + Weekly

Disaster Recovery RTO: 4 hours

Data

Anonymization

Not

Implemented

Libraries & Dependencies Analysis

156
Total Dependencies

12
Critical Vulnerabilities

34
Outdated Packages

8
EOL Packages

Critical Dependencies Requiring Immediate Action

Package Current Latest
Risk

Level
CVEs

Action

Required

@nuxtjs/axios
Known RCE vulnerability in axios <

5.13.6

5.13.1 5.13.6 Critical 3

lodash
Arbitrary code execution via template

4.17.20 4.17.21 Critical 1

node-sass
Deprecated, should migrate to sass

6.0.1 9.0.0 High 0

webpack
Security patches available

5.88.1 5.88.2 Medium 0

vue
End of life approaching

2.6.14 2.7.14 Medium 0

Dependency Categories Overview

Core Framework

Total Packages 12

Vulnerable 3

Outdated 5

UI Components

Total Packages 24

Vulnerable 1

Outdated 8

Build Tools

Total Packages 18

Vulnerable 2

Outdated 6

Testing

Total Packages 15

Vulnerable 0

Outdated 4

Utilities

Total Packages 31

Vulnerable 4

Outdated 12

Development

Total Packages 56

Vulnerable 2

Outdated 15

End-of-Life (EOL) Packages

node-sass EOL

Deprecated since October 2020. No security

updates.

→ Migrate to sass (dart-sass)

core-js@2 EOL Soon

Version 2 support ends December 2023.

→ Upgrade to core-js@3

babel-core@6 Legacy

Ancient version, missing modern JS features.

→ Upgrade to @babel/core@7

Recommended Immediate Actions

1 Security Patches (Immediate)
Update axios, lodash, and other packages

with known CVEs. Estimated effort: 4-6 hours.

2 EOL Package Migration (This Sprint)
Replace node-sass with sass. Update build

configurations. Estimated effort: 8-12 hours.

3 Dependency Audit Process (Next

Sprint)
Implement automated dependency scanning

in CI/CD. Set up Dependabot or Renovate for

ongoing monitoring.

4 Bundle Size Optimization (Next Month)
Remove unused dependencies, implement

tree-shaking. Potential bundle size reduction:

25-30%.

Dependency Management Recommendations

Short-term (Next 2 Weeks)

Run npm audit fix for automated patches

Manually update critical vulnerabilities in axios and

lodash

Replace node-sass with sass package

Implement package-lock.json validation in CI

Set up Snyk or similar for vulnerability monitoring

Long-term (Next 2 Months)

Migrate from Webpack to Vite for faster builds

Implement dependabot for automated dependency

updates

Establish monthly dependency review process

Create dependency approval workflow for new

additions

Implement bundle analysis in CI for size monitoring

Security Review & Assessment

3
Critical Issues

5
High Risk

12
Medium Risk

C+
Security Score

Authentication & Authorization 2 Critical 3 High 1 Medium

JWT tokens stored in localStorage Critical

Impact: XSS vulnerability allows token theft

Recommendation: Move to httpOnly cookies

No token expiration validation Critical

Impact: Expired tokens still accepted

Recommendation: Implement server-side token validation

Missing rate limiting on login endpoint High

Impact: Brute force attacks possible

Recommendation: Implement rate limiting (5 attempts/minute)

Weak password policy High

Impact: User accounts vulnerable to dictionary attacks

Recommendation: Enforce complex password requirements

No account lockout mechanism Medium

Impact: Unlimited login attempts allowed

Recommendation: Lock accounts after 10 failed attempts

API Security 1 Critical 2 High 4 Medium

API keys exposed in client bundle Critical

Impact: Third-party service abuse

Recommendation: Move API calls to server-side

Missing CSRF protection High

Impact: Cross-site request forgery attacks

Recommendation: Implement CSRF tokens

Unvalidated API inputs High

Impact: SQL injection and XSS vulnerabilities

Recommendation: Add input validation middleware

No API versioning Medium

Impact: Breaking changes affect all clients

Recommendation: Implement API versioning strategy

Verbose error messages Medium

Impact: Information disclosure

Recommendation: Sanitize error responses

Secrets & Configuration Security

Exposed API Keys

Found 3 API keys in client-side JavaScript

bundle:

STRIPE_PUBLIC_KEY=pk_live_...
GOOGLE_MAPS_API_KEY=AIzaSy...
SENTRY_DSN=https://...

Data Security Assessment

Encryption at Rest Not Implemented

Encryption in Transit ✓ TLS 1.2+

Database Access Control Basic

PII Data Handling Needs Improvement

Backup Encryption Not Encrypted

Move sensitive keys to server-side environment

variables

Environment Variables

Production secrets stored in .env files

committed to repository

Use secure secret management (AWS Secrets

Manager, HashiCorp Vault)

Audit Logging ✓ Comprehensive

Infrastructure Security Analysis

Network Security

CDN Security Headers Partial

HTTPS Enforcement ✓ Enabled

WAF Protection Not Configured

DDoS Protection ✓ Cloudflare

Monitoring & Logging

Security Monitoring Basic

Intrusion

Detection

Not

Implemented

Log Retention 90 days

Alerting Manual Review

Compliance Status

GDPR Compliance 70%

SOC 2 Type II In Progress

PCI DSS Not Applicable

CCPA ✓ Compliant

Critical Security Actions Required

IMMEDIATE (Within 24 Hours)

• Remove API keys from client-side bundles

• Implement httpOnly cookies for JWT storage

• Add server-side token expiration validation

HIGH PRIORITY (This Week)

• Implement CSRF protection on all state-changing endpoints

• Add rate limiting to authentication endpoints

• Enable database encryption at rest

• Set up Web Application Firewall (WAF)

MEDIUM PRIORITY (Next 2 Weeks)

• Implement comprehensive security headers

• Set up automated vulnerability scanning

• Create incident response plan

• Schedule penetration testing

Code Quality Assessment

85%
Test Coverage

72
Maintainability Index

23
Code Smells

Industry avg: 31

Detailed Code Quality Metrics

Static Analysis Results

Cyclomatic Complexity 8.4 Moderate

Technical Debt 2.5 days Good

Duplicate Code 4.2% Excellent

Documentation Coverage 67% Average

Test Suite Analysis

Unit Tests 142 tests

Integration Tests 23 tests

E2E Tests 8 tests

Test Execution Time 2.3 minutes

Flaky Tests 3 tests

ESLint & TypeScript Analysis

vue/no-unused-components 12 violations Warning

Components imported but not used

@typescript-eslint/no-explicit-any 8 violations Error

Usage of 'any' type defeats TypeScript purpose

vue/require-default-prop 15 violations Warning

Props without default values

no-console 23 violations Warning

Console statements in production code

prefer-const 6 violations Error

Variables that should be constants

Code Organization Analysis

Strengths

• Consistent component naming conventions

• Well-structured folder hierarchy

• Proper separation of concerns

• TypeScript interfaces properly defined

• Composables/hooks well organized

Areas for Improvement

• Large components (300+ lines) need refactoring

• Inconsistent import ordering

• Missing barrel exports in utils

• Some business logic in components

Recommended Actions

1 Fix TypeScript 'any' Usage
Replace 8 instances of 'any' type with proper

interfaces. Estimated effort: 2-3 hours.

2 Refactor Large Components
Break down 5 components with 300+ lines

into smaller, focused components. Estimated

effort: 1 day.

3 Increase E2E Test Coverage
Add 12 more E2E tests to cover critical user

journeys. Target: 95% feature coverage.

Code Quality Improvement Roadmap

Week 1-2

Fix all ESLint errors (14

violations)

Replace 'any' types with proper

interfaces

Remove unused imports and

components

Add missing prop defaults

Week 3-4

Refactor 5 large components

into smaller ones

Extract business logic to

composables

Add comprehensive JSDoc

documentation

Week 5-6

Increase test coverage to 90%+

Add integration tests for API

endpoints

Set up automated code quality

gates

Implement pre-commit hooks

Implement consistent import

ordering

Performance & Scalability Analysis

2.4s
First Contentful Paint

4.2s
Time to Interactive

1.2MB
Bundle Size

68
Lighthouse Score

Performance Bottlenecks Identified

Large JavaScript Bundles High Impact

Main bundle size of 1.2MB significantly impacts initial load time. Large vendor chunks include unused code

from libraries.

Current State:

• Main bundle: 850KB

• Vendor bundle: 380KB

• CSS bundle: 45KB

Optimization Potential:

• Tree-shaking: -200KB

• Code splitting: -150KB

• Compression: -100KB

Database Query Performance High Impact

Identified 23 slow database queries averaging 500ms+ response time. Missing indexes on frequently queried

columns.

SELECT * FROM users u
JOIN user_profiles up ON u.id = up.user_id
JOIN organizations o ON u.org_id = o.id
WHERE u.created_at > '2023-01-01'
ORDER BY u.last_login DESC
-- Missing index on (created_at, last_login)

Image Optimization Medium Impact

Images account for 40% of total page weight. No modern format support (WebP/AVIF) and missing

responsive image implementation.

Current Issues:

• Large PNG/JPG files

• No lazy loading

• Single resolution served

Solutions:

• WebP/AVIF conversion

• Intersection Observer lazy loading

• Responsive image srcsets

Network & Caching Analysis

Strengths

• CDN properly configured (Cloudflare)

• GZIP compression enabled

• Static assets cached (1 year)

• Service worker for offline support

Improvements Needed

• API responses not cached (Redis)

• No Brotli compression

• Missing resource hints (preload/prefetch)

• Suboptimal cache headers for HTML

Server-Side Rendering (SSR) Analysis

SSR Performance Moderate

Average TTFB 850ms

Hydration Time 320ms

Memory Usage 125MB avg

CPU Usage 45% avg

Recommendation: Implement incremental static
regeneration (ISR) for content that doesn't change
frequently to reduce server load.

Performance Optimization Roadmap

Quick Wins (1-2 weeks)

Bundle Optimization

Enable tree-shaking and remove
unused dependencies

Impact: -300KB bundle size

Image Compression

Compress existing images and add
WebP support

Impact: -1.2s load time

Medium Term (3-4 weeks)

Database Optimization

Add missing indexes and optimize
slow queries

Impact: -400ms API response

Code Splitting

Implement route-based and
component-based splitting

Impact: -2.1s initial load

Long Term (5-8 weeks)

Caching Strategy

Implement Redis caching and
optimize cache headers

Impact: -600ms repeat visits

CDN Optimization

Advanced caching rules and edge
computing

Impact: -200ms global latency

Expected Performance Improvements

Current Performance Metrics

First Contentful Paint 2.4s

Time to Interactive 4.2s

Lighthouse Performance 68/100

Bundle Size 1.2MB

Projected After Optimization

First Contentful Paint 0.9s (-63%)

Time to Interactive 1.6s (-62%)

Lighthouse Performance 92/100 (+35%)

Bundle Size 650KB (-46%)

Business Impact Projection:

• Conversion rate improvement: +15-20% (faster load times)

• SEO ranking boost: +10-15 positions (Core Web Vitals)

• User engagement: +25% session duration

• Server costs: -30% (optimized queries and caching)

Current Architecture Overview

System Architecture Diagram

Architecture Visualization

Detailed system architecture diagram showing component relationships, data flow, and infrastructure

setup would be included here in the actual report.

Frontend Architecture

Component Structure

• Pages: 23 main routes

• Components: 124 reusable components

• Composables: 18 Vue 3 composables

• Stores: 8 Pinia stores

• Plugins: 12 Nuxt plugins

Backend Architecture

API Layer

• 45 REST endpoints

• Express.js middleware

• JWT authentication

• Rate limiting (Redis)

• Input validation (Joi)

State Management

• Pinia for client-side state

• Server-side hydration via Nuxt

• LocalStorage for user preferences

• Session storage for temporary data

Data Layer

• PostgreSQL primary database

• Redis for caching & sessions

• Prisma ORM for data access

• Database migrations automated

Infrastructure & Deployment

Hosting & CDN

Frontend Vercel (Pro Plan)

API Server Railway

Database Supabase (Pro)

CDN Cloudflare

Monitoring Sentry

CI/CD Pipeline

Source Control GitHub

CI/CD GitHub Actions

Testing Jest + Cypress

Deploy Time ~4 minutes

Environments Dev, Staging, Prod

Security & Monitoring

SSL/TLS ✓ Auto-renewal

Error Tracking Sentry

Uptime Monitoring Pingdom

Performance Lighthouse CI

Backups Daily automated

Architecture Assessment & Recommendations

Architectural Strengths

• Clear separation of concerns (frontend/backend)

• Scalable component architecture

• Proper state management with Pinia

• Automated deployment pipeline

• Comprehensive error tracking

• Database schema well-normalized

• API design follows REST principles

Areas Requiring Attention

• Monolithic frontend needs micro-frontend

consideration

• No API versioning strategy implemented

• Missing distributed caching layer

• Single point of failure in API server

• No container orchestration (Docker/K8s)

• Limited horizontal scaling capabilities

• Manual database scaling process

Migration Readiness & Implementation Plan

Migration Readiness Score 78%

Code Compatibility 85%

Dependencies Ready 72%

Test Coverage 90%

Team Readiness 65%

Timeline & Cost Estimate

Planning & Setup
2 weeks

$12K

Core Migration
8 weeks

$48K

Testing & QA
3 weeks

$18K

Deployment & Monitoring
1 week

$6K

Total Project
14 weeks

$84K

Migration Blockers & Risk Assessment

Critical Blocker: Legacy @nuxtjs/axios Module

The @nuxtjs/axios module is deprecated in Nuxt 3 and must be replaced with $fetch or ofetch. 78 files

contain axios imports that need refactoring.

Current Implementation:

// plugins/axios.js
this.$axios.get('/api/users')
 .then(response => {
 // handle response
 })

Nuxt 3 Replacement:

// composables/useApi.js
const { data } = await $fetch('/api/users')
// or using useFetch
const { data } = await useFetch('/api/users')

Effort Required: 16-20 hours of refactoring across 78 files

High Risk: Custom Webpack Configuration

Nuxt 3 uses Vite by default instead of Webpack. Custom webpack configurations need to be migrated or

replaced with Vite equivalents. 12 custom webpack plugins identified.

Migration Strategy: Gradual migration with Webpack compatibility mode initially

Medium Risk: Community Modules Without Nuxt 3 Support

3 community modules don't have Nuxt 3 equivalents: @nuxtjs/moment, @nuxtjs/google-analytics, nuxt-

clipboard2

Solution: Replace with Nuxt 3 compatible alternatives or implement custom plugins

Detailed Migration Plan

Phase 1: Foundation & Setup (Weeks 1-2)

• Set up Nuxt 3 project structure alongside existing Nuxt 2

• Configure Nuxt Bridge for gradual migration

• Migrate build configuration and environment variables

• Set up new CI/CD pipeline for Nuxt 3

• Train development team on Nuxt 3 differences

• Create migration documentation and guidelines

Deliverables: Working Nuxt 3 scaffold, team training completed, CI/CD configured

Phase 2: Core Component Migration (Weeks 3-6)

• Migrate Vue components from Options API to Composition API

• Update component imports and registration

• Refactor Vuex stores to Pinia (if not already done)

• Migrate pages and layouts to new structure

• Update routing configuration

• Migrate authentication logic

Deliverables: 80% of components migrated, authentication working, basic routing functional

Phase 3: API & Data Layer Migration (Weeks 7-10)

• Replace @nuxtjs/axios with $fetch/useFetch

• Migrate API plugins and interceptors

• Update error handling patterns

• Migrate server middleware to Nitro

• Update data fetching patterns in components

• Implement new caching strategies

Deliverables: All API calls migrated, server middleware functional, data layer complete

Phase 4: Testing & Optimization (Weeks 11-13)

• Comprehensive testing of migrated features

• Performance optimization and bundle analysis

• Cross-browser compatibility testing

• Load testing and performance benchmarking

• Security audit of migrated application

• Documentation updates and team training

Deliverables: Full test coverage, performance optimized, security validated

Phase 5: Deployment & Monitoring (Week 14)

• Production deployment with blue-green strategy

• Monitor application performance and errors

• Gradual traffic migration from Nuxt 2 to Nuxt 3

• Performance monitoring and optimization

• Post-migration support and bug fixes

• Final documentation and handover

Deliverables: Nuxt 3 application live in production, monitoring configured, team ready

Team Requirements

Required Team Composition

Senior Frontend Engineer 1 (Full-time)

Frontend Engineers 2 (Full-time)

DevOps Engineer 1 (Part-time)

ROI & Business Impact

Expected Benefits

• 40-60% faster page load times

• 30% smaller bundle sizes

• Enhanced developer experience

QA Engineer 1 (Part-time)

Project Manager 1 (Part-time)

Training Requirements

• Nuxt 3 fundamentals (16 hours)

• Composition API deep dive (8 hours)

• Nitro server engine (4 hours)

• Migration best practices (4 hours)

• Future-proof framework support

• Improved SEO performance

• Better TypeScript integration

Cost Savings (Annual)

Faster Development $24K

Reduced Server Costs $8K

Improved Conversion $45K

Total Annual Savings $77K

Support & Maintenance Planning

Essential Plan

$2,500
per month

24/7 monitoring & alerts

Monthly dependency

updates

Security patches within

48h

Performance monitoring

8 hours dev

support/month

Monthly reports

Enterprise Plan

$8,500
per month

Everything in Professional

Dedicated account

manager

40+ hours dev

support/month

Priority feature

development

Quarterly architecture

reviews

24/7 emergency support

Professional Plan

$4,500
per month

RECOMMENDED

Everything in Essential

Weekly dependency audits

Proactive performance

optimization

20 hours dev

support/month

Code quality reviews

Architecture consultations

Custom SLA agreements

Sample Monthly Maintenance Report

Security & Updates

Security Patches Applied 12

Dependencies Updated 28

Vulnerabilities Resolved 6

Security Score A+ (↑ from B+)

Performance Metrics

Average Load Time 1.2s (↓ 15%)

Uptime 99.98%

Lighthouse Score 94 (↑ from 89)

Bundle Size -45KB optimized

Issues Identified & Resolved

• Fixed memory leak in WebSocket connection handler

• Optimized database queries causing slow dashboard load (4.2s → 1.1s)

• Updated Node.js runtime to address CVE-2023-44487

• Implemented lazy loading for product image gallery (+12% conversion)

• Resolved CORS issues affecting Safari users

Next Month's Planned Activities

• Implement advanced caching strategy for API responses

• Migrate remaining Webpack configurations to Vite

• Set up automated accessibility testing in CI/CD

• Performance audit of mobile experience

• Preparation for Node.js 20 LTS migration

Bi-weekly reports & calls

Support Communication & SLA

Response Time SLAs

Critical Issues

Site down, security breach, data loss

Response: 1 hour

High Priority

Major functionality broken, performance degraded

Response: 4 hours

Medium Priority

Minor bugs, feature requests, questions

Response: 24 hours

Communication Channels

Primary: Dedicated Slack Channel

Real-time communication, file sharing

Emergency: Phone Hotline

24/7 for critical issues (Enterprise only)

Formal: Email & Ticketing

Documentation, change requests

Regular: Video Calls

Weekly/bi-weekly reviews, planning

Maintenance Best Practices & Workflow

Proactive Monitoring

Automated dependency

vulnerability scanning

Performance regression

detection

Uptime and availability

monitoring

Error rate threshold alerting

Resource usage trend analysis

Regular Maintenance

Weekly dependency updates

and testing

Monthly performance

optimization reviews

Quarterly security audits

Database maintenance and

optimization

Backup verification and testing

Documentation & Reporting

Detailed monthly progress

reports

Change logs and impact

assessments

Performance metrics

dashboards

Knowledge base updates

Incident post-mortems and

lessons learned

Actionable Tasks & Implementation Checklist

8
Critical Tasks

12
High Priority

18
Medium Priority

156h
Total Effort

Critical Security Issues CRITICAL

Remove API keys from client-side bundles 4 hours Senior Frontend Dev

Move Stripe, Google Maps, and Sentry keys to server-side environment variables

Deadline:

Within 24 hours

Expected Impact:

Prevents API key abuse and unauthorized access

Implement JWT httpOnly cookie storage 6 hours Senior Full-stack Dev

Replace localStorage JWT storage with secure httpOnly cookies

Deadline:

Within 48 hours

Expected Impact:

Prevents XSS-based token theft

Add CSRF protection to state-changing endpoints 8 hours Backend Developer

Implement CSRF tokens for all POST, PUT, DELETE endpoints

Deadline:

This week

Expected Impact:

Prevents cross-site request forgery attacks

Performance Optimizations HIGH

Implement bundle splitting and tree-shaking 12 hours Senior Frontend Dev

Configure Webpack to remove unused code and split bundles by route

Deadline:

Next week

Expected Impact:

Reduce initial bundle size by ~300KB, improve load

time by 1.5s

Optimize database queries with indexes 8 hours Backend Developer

Add missing indexes on frequently queried columns (user_id, created_at, etc.)

Deadline:

Next week

Expected Impact:

Reduce API response time from 850ms to ~300ms

Implement image optimization and WebP support 16 hours Frontend Developer

Add responsive images, lazy loading, and WebP/AVIF format support

Deadline:

2 weeks

Expected Impact:

Reduce image payload by 40%, improve LCP by 1.2s

Code Quality Improvements MEDIUM

Fix TypeScript 'any' type usage 3 hours Any Frontend Dev

Replace 8 instances of 'any' type with proper interfaces

Deadline:

This sprint

Expected Impact:

Improved type safety and developer experience

Refactor large components (300+ lines) 1 day Mid-level Frontend Dev

Break down 5 large components into smaller, focused components

Deadline:

Next sprint

Expected Impact:

Improved maintainability and testability

Increase E2E test coverage 2 days QA Engineer + Frontend Dev

Add 12 E2E tests covering critical user journeys

Deadline:

Next sprint

Expected Impact:

Reduce production bugs by ~25%

Infrastructure & DevOps MEDIUM

Set up automated dependency vulnerability scanning 4 hours DevOps Engineer

Configure Snyk or similar tool in CI/CD pipeline

Deadline:

Next week

Expected Impact:

Proactive security vulnerability detection

Implement Redis caching layer 12 hours Backend Developer

Add Redis for API response caching and session storage

Deadline:

3 weeks

Expected Impact:

Reduce server load by 30%, improve response times

Configure monitoring and alerting 8 hours DevOps Engineer

Set up comprehensive monitoring with Datadog or similar

Deadline:

2 weeks

Expected Impact:

Proactive issue detection and faster resolution

Sprint Planning & Resource Allocation

Sprint 1 (Current - 2 weeks)

Critical Security Fixes

Sprint 2 (Weeks 3-4)

Performance Optimizations

Sprint 3 (Weeks 5-6)

Code Quality & Testing

• Fix TypeScript issues

• Remove API keys from

bundles

• Implement httpOnly JWT

storage

• Add CSRF protection

Effort: 18 hours | Team: 2
developers

• Bundle splitting & tree-

shaking

• Database query optimization

• Setup monitoring & alerting

Effort: 28 hours | Team: 3
developers

• Refactor large components

• Increase test coverage

Effort: 32 hours | Team: 2
developers + QA

Task Tracking & Accountability

Recommended Tracking Tools

Primary: GitHub Issues/Projects

Link tasks directly to code changes, automated

progress tracking

Alternative: Linear

Excellent for sprint planning and progress

visualization

Fallback: Notion/Airtable

Comprehensive project management with custom

fields

Success Metrics & Validation

Security Improvements

• Security score: B+ → A

• Critical vulnerabilities: 12 → 0

• Penetration test pass rate: 95%+

Performance Gains

• Lighthouse score: 68 → 90+

• Load time: 4.2s → 2.0s

• Bundle size: 1.2MB → 800KB

Code Quality

• Test coverage: 85% → 95%

• TypeScript errors: 8 → 0

• Code smells: 23 → 10

Key Recommendations & Strategic Priorities

Security First

IMMEDIATE

Address 12 critical security

vulnerabilities before any

other development work.

72 hours
To resolve critical issues

Performance Boost

HIGH IMPACT

Quick performance wins can

improve conversion rates by

15-20%.

2 weeks
For major improvements

Migration Planning

STRATEGIC

78% migration ready - start

Nuxt 3 planning now for Q1

2024.

14 weeks
Total migration timeline

Recommendation #1: Immediate Security Hardening

Critical Actions (Next 72 Hours)

Remove API keys from client-side JavaScript

bundles immediately

Implement httpOnly cookies for JWT token storage

to prevent XSS attacks

Add CSRF protection to all state-changing API

endpoints

Update Node.js to latest LTS version (currently 4

months from EOL)

Business Impact

Risk Mitigation

Prevents potential $500K+ in damages from security
breaches, protects customer data and company reputation

Compliance

Essential for SOC 2 certification and GDPR compliance,
required for enterprise customer contracts

Recommendation #2: Performance Quick Wins

Optimization Strategy (2-4 Weeks)

Bundle Optimization

Implement tree-shaking and code splitting to reduce bundle
size by 46%

Current: 1.2MB Target: 650KB

Database Optimization

Add indexes to frequently queried columns, optimize 23
slow queries

Current: 850ms avg Target: 300ms avg

Image Optimization

Implement WebP/AVIF support and lazy loading

Current: 40% of payload Target: 15% of payload

Expected Outcomes

User Experience

• Load time: 4.2s → 1.6s (-62%)
• Lighthouse score: 68 → 92 (+35%)
• Core Web Vitals: All metrics in "Good" range

Business Impact

• Conversion rate: +15-20% improvement
• SEO ranking: +10-15 positions boost
• Server costs: -30% reduction

Recommendation #3: Strategic Nuxt 3 Migration

Migration Readiness Assessment

Overall Readiness 78% Ready

Code Compatibility 85%

Dependencies 72%

Team Readiness 65%

Strategic Benefits

Technical Advantages

• 40-60% faster build times with Vite
• Auto-imports reduce boilerplate by 30%
• Better TypeScript integration
• Nitro server engine performance gains

Long-term Value

• 5+ years of framework support
• Enhanced developer productivity

• Future-proof architecture
• Competitive advantage maintenance

Recommended Timeline

Q4 2023

Security fixes,

performance

optimization

Q1 2024

Migration planning, team

training

Q2 2024

Core migration execution

Q3 2024

Testing, optimization,

launch

Implementation Priority Matrix

High Impact, Low Effort (Do First)

Bundle Optimization
12 hours → 300KB reduction

Security Quick Fixes
18 hours → Critical risk elimination

Database Indexing
8 hours → 60% query speed improvement

High Impact, High Effort (Plan Carefully)

Nuxt 3 Migration
560 hours → Long-term strategic value

Architecture Refactoring
240 hours → Scalability foundation

Comprehensive Testing
120 hours → Quality assurance

Frequently Asked Questions

Audit Process & Scope

What exactly is included in your audit scope?

Our comprehensive audit covers: complete codebase analysis (frontend & backend), dependency

security review, performance profiling, architecture evaluation, database optimization analysis,

infrastructure assessment, and detailed migration roadmap with cost estimates. We examine 100%

of your code, not just samples.

How do you ensure thoroughness in a 48-hour timeframe?

We use automated analysis tools combined with senior engineer expertise. Our process includes: 12

hours automated scanning (security, performance, code quality), 24 hours manual review by senior

engineers, 8 hours report writing and validation, 4 hours for client walkthrough preparation. This

proven methodology has been refined across 200+ audits.

Do you provide specific code examples and fixes?

Yes, every issue identified includes: problematic code snippets, specific fix recommendations with

code examples, estimated effort required, business impact analysis, and prioritized action items.

You receive actionable guidance, not just high-level observations.

Security & Privacy

How do you ensure our code and data remain confidential?

100% in-house team with no outsourcing. All engineers are US-based with security clearances. We

provide NDAs before any code access, use SOC2-compliant processes, analyze code in secure

isolated environments with automatic cleanup, and maintain detailed audit logs. Your code never

leaves our secure infrastructure.

What happens to our code after the audit?

All code and analysis artifacts are automatically deleted from our systems within 30 days post-

delivery. We maintain only anonymized metrics for process improvement. You own all audit results

and can request immediate deletion at any time.

Can you work with our compliance requirements?

Yes, we regularly work with SOC2, HIPAA, PCI-DSS, and GDPR requirements. We can sign additional

compliance agreements, work within your security frameworks, and provide detailed documentation

for your compliance auditors.

Technical Approach

What tools and methodologies do you use?

We combine industry-leading tools: SonarQube for code quality, Snyk for security scanning,

Lighthouse for performance, custom static analysis tools, plus manual review by senior engineers

with 10+ years experience in Vue/Nuxt ecosystems.

How accurate are your migration estimates?

Our estimates are based on 50+ Nuxt 2→3 migrations with 90% accuracy within ±15%. We account

for: code complexity analysis, dependency compatibility matrix, team skill assessment, and

historical migration data. Estimates include buffer for unforeseen challenges.

Do you support frameworks other than Nuxt?

While we specialize in Vue/Nuxt ecosystems, we also audit React, Angular, and vanilla JavaScript

applications. Our methodology adapts to any modern web framework, though Nuxt audits benefit

from our deepest expertise.

Pricing & Value

Why is your audit priced at $499 when others charge $5,000+?

We've optimized our process for efficiency without sacrificing quality. High-volume automation

handles routine analysis, allowing our experts to focus on strategic insights. This 10x efficiency gain

lets us offer enterprise-quality audits at accessible pricing.

What if we need follow-up consultations?

Every audit includes a 60-minute walkthrough call. Additional consultations are available at

$200/hour. Many clients upgrade to our ongoing support plans ($2,500-8,500/month) for

continuous monitoring and optimization.

Is there a money-back guarantee?

Yes, if you're not satisfied with the audit quality, we offer a full refund within 7 days of delivery. In 3

years, our refund rate is <2%, demonstrating consistent value delivery.

Post-Audit Support

Do you help implement the recommendations?

Yes, we offer three options: 1) Implementation partnership (we do the work), 2) Consulting support

(we guide your team), 3) Ongoing maintenance plans. Most clients choose a hybrid approach based

on their internal capacity.

How do you handle urgent issues found during audit?

Critical security vulnerabilities are flagged within 24 hours via priority communication. We provide

immediate patch guidance and can offer emergency implementation support if needed. Your

application security is never left at risk.

What kind of ongoing support do you provide?

Our support plans include: 24/7 monitoring, proactive security updates, performance optimization,

monthly reports, architecture consultations, and priority development support. Plans range from

$2,500-8,500/month based on scope.

Timeline & Delivery

Is the 48-hour SLA guaranteed?

Yes, we guarantee audit delivery within 48 hours of receiving code access, or you receive a 50%

refund. Our average delivery time is 36 hours. Emergency audits can be delivered within 24 hours

for an additional $250 fee.

What if our codebase is extremely large or complex?

We've audited applications with 500K+ lines of code. For exceptionally large codebases (>1M lines),

we may require additional time and adjust pricing accordingly. This is discussed upfront during

scoping.

Can you audit applications still in development?

Yes, development-stage audits are often most valuable for preventing technical debt. We can audit

partial implementations and provide ongoing code review as your application grows.

Still Have Questions?

Technical Questions

Chat with our engineering team

about specific technical concerns

or requirements.

Pricing & Packages

Discuss custom pricing for

enterprise needs or ongoing

support requirements.

Timeline & Urgency

Need an audit faster than 48

hours? Let's discuss emergency

options and priorities.

What's Next? Choose Your Path Forward

Ready to Migrate? Just Need Guidance?

Your application is 78%

migration-ready. Let's execute

the Nuxt 3 upgrade with our

expert team.

Complete migration in 14

weeks

Dedicated senior

engineering team

$84K total project cost

Performance improvements

guaranteed

Book Migration Consultation

Free 60-minute strategy session
included

Need Ongoing
Support?

Keep your application secure,

fast, and up-to-date with our

comprehensive maintenance

plans.

24/7 monitoring & security

updates

Monthly performance

optimization

From $2,500/month

(recommended: $4,500)

Proactive issue prevention

View Support Plans

First month 50% off for audit clients

Get expert consultation and

implementation guidance for

your internal team.

Strategic architecture

consulting

Code review and

mentoring

$200/hour consultation

rate

Flexible engagement

options

Schedule Consultation

First consultation free for audit
clients

Immediate Next Steps

1 This Week (Critical)

Security Fixes

Remove API keys from client bundles,

implement httpOnly JWT storage, add CSRF

protection. Cannot wait.

2 Next 2 Weeks

Performance Quick Wins

Bundle optimization, database indexing, image

compression. High impact, moderate effort.

3 Next Month

Migration Planning

4 Q1 2024

Full Migration

Team training, environment setup, migration

strategy finalization. Foundation for success.

Execute complete Nuxt 3 migration, testing,

optimization, and production deployment.

How We'll Support Your Success

Proven Process

200+ successful audits and 50+

Nuxt migrations. We know what

works and what doesn't. Your

project benefits from this

experience.

Ongoing Partnership

We're not just consultants - we're

your long-term technology

partners. Available for support,

questions, and future growth.

Results Guaranteed

We stand behind our

recommendations. If our

optimizations don't deliver

promised improvements, we'll fix it

at no cost.

Ready to Take Action?

Your Nuxt application has strong foundations and significant optimization potential. The

security issues need immediate attention, but the performance and migration

opportunities can transform your business outcomes.

Book Free Strategy Call Get Custom Quote

Questions? Email us at hello@nunuqs.com or call (555) 123-4567

NDA Available 100% In-House 48h SLA No Outsourcing

